Hermitian and skew hermitian forms over local rings
نویسندگان
چکیده
منابع مشابه
Convergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملCodes over rings, complex lattices and Hermitian modular forms
We introduce the finite ring S2m = Z2m + iZ2m . We develop a theory of self-dual codes over this ring and relate self-dual codes over this ring to complex unimodular lattices. We describe a theory of shadows for these codes and lattices. We construct a gray map from this ring to the ring Z2m and relate codes over these rings, giving special attention to the case when m = 2. We construct various...
متن کامل∗-Valuations and Hermitian Forms on Skew Fields
This paper is a survey of the literature on ways in which the concept of ordering can be extended to the setting of a division ring with involution and the main results for these extensions.
متن کاملAlmost power-Hermitian rings
In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.
متن کاملCohomological Invariants of Quaternionic Skew-hermitian Forms
We define a complete system of invariants en,Q, n ≥ 0 for quaternionic skew-hermitian forms, which are twisted versions of the invariants en for quadratic forms. We also show that quaternionic skew-hermitian forms defined over a field of 2-cohomological dimension at most 3 are classified by rank, discriminant, Clifford invariant and Rost invariant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2018
ISSN: 0024-3795
DOI: 10.1016/j.laa.2018.04.009